Convex analysis on Cartan subspaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex analysis on Cartan subspaces

In 1937, von Neumann [31] gave a famous characterization of unitarily invariant matrix norms (that is, norms f on Cp×q satisfying f(uxv) = f(x) for all unitary matrices u and v and matrices x in Cp×q). His result states that such norms are those functions of the form g ◦ , where the map x ∈ Cp×q 7→ (x) ∈ R has components the singular values 1(x) ≥ 2(x) ≥ · · · ≥ p(x) of x (assuming p ≤ q) and g...

متن کامل

On the Conjugacy of Cartan Subspaces

Let G be a connected reductive algebraic group defined over a field k of characteristic not 2, θ an involution of G defined over k, H a k-open subgroup of the fixed point group of θ and Gk (resp. Hk) the set of k-rational points of G (resp. H). The variety Gk/Hk is called a symmetric k-variety. For real and -adic symmetric k-varieties the space L(Gk/Hk ) of square integrable functions decompose...

متن کامل

Hyperinvariant Subspaces for Some Operators on Locally Convex Spaces

Some results concerning hyperinvariant subspaces of some operators on locally convex spaces are considered. Denseness of a class of operators which have a hyperinvariant subspace in the algebra of locally bounded operators is proved.

متن کامل

Acceleration of the PDHGM on strongly convex subspaces

We propose several variants of the primal-dual method due to Chambolle and Pock. Without requiring full strong convexity of the objective functions, our methods are accelerated on subspaces with strong convexity. This yields mixed rates, O (1/N 2) with respect to initialisation andO (1/N ) with respect to the dual sequence, and the residual part of the primal sequence. We demonstrate the e cacy...

متن کامل

Barycentric Subspaces Analysis on Spheres

This paper addresses the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. Current methods like Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) minimize the distance to a ”Geodesic subspace”. This allows to build sequences of nested subspaces which are consistent with a forward component analysis approach. However, these methods cannot easily be adapted to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 2000

ISSN: 0362-546X

DOI: 10.1016/s0362-546x(99)00126-1